Researchers Draw Parallel Between Falcon Attack, Takedown of Rogue Drones

Researchers at Oxford University in England have discovered that peregrine falcons steer their attacks using the same control strategies as guided missiles. The findings, which overturn previous assumptions that peregrines’ aerial hunting follows simple geometric rules, could be applied to the design of small drones that can take down other rogue drones in settings such as airports or prisons, the university claims.

The research was initially funded by the U.S. Air Force Research Laboratory and published open-access in the journal PNAS. The Oxford researchers used miniature GPS receivers to track peregrines attacking dummy targets thrown by a falconer or towed by a drone and were able to apply a mathematical simulation to these movements describing the dynamics of the guidance system used in intercepting the dummy prey.

“Falcons are classic aerial predators, synonymous with agility and speed. Our GPS tracks and on-board videos show how peregrine falcons intercept moving targets that don’t want to be caught,” explains principal investigator Professor Graham Taylor of the Oxford Flight Group in Oxford University’s Department of Zoology. “Remarkably, it turns out that they do this in a similar way to most guided missiles. Our next step is to apply this research to designing a new kind of visually guided drone, able to remove rogue drones safely from the vicinity of airports, prisons and other no-fly zones.”

The researchers collected on-board video giving a falcon’s-eye view of the attacks and used this to back up their conclusions. They found that the terminal attack trajectories of peregrines follow the same law – known as proportional navigation (PN) – used by visually guided missiles but with a tuning appropriate to their lower flight speed. This method does not require any information on a target’s speed or distance; instead, it relies simply on information about the rotation of the attacker’s line of sight to the target, the university says.

The researchers concluded that PN guidance optimized for low flight speeds could find use in small, visually guided drones designed to remove other drones from protected airspace.

Co-author Dr. Caroline Brighton from Oxford’s Department of Zoology adds, “We spent four field seasons flying falcons in the Welsh hills, working with an experienced falconer and a qualified drone pilot. It was very exciting to study these sleek, formidable aerial predators and to watch them as they chased down our maneuvering lure towed behind a small remote-controlled airplane – then, through our computer modeling, to reveal the secret of their attack strategy.”

LEAVE A REPLY

Please enter your comment!
Please enter your name here